首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   626篇
  免费   8篇
  国内免费   41篇
安全科学   30篇
废物处理   64篇
环保管理   55篇
综合类   98篇
基础理论   114篇
环境理论   1篇
污染及防治   254篇
评价与监测   35篇
社会与环境   19篇
灾害及防治   5篇
  2023年   8篇
  2022年   16篇
  2021年   10篇
  2020年   3篇
  2019年   13篇
  2018年   25篇
  2017年   28篇
  2016年   23篇
  2015年   24篇
  2014年   31篇
  2013年   56篇
  2012年   32篇
  2011年   46篇
  2010年   33篇
  2009年   35篇
  2008年   54篇
  2007年   41篇
  2006年   36篇
  2005年   25篇
  2004年   20篇
  2003年   16篇
  2002年   21篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1994年   6篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1961年   1篇
  1958年   2篇
排序方式: 共有675条查询结果,搜索用时 78 毫秒
81.
A simple approach to modeling microbial biomass in the rhizosphere   总被引:4,自引:0,他引:4  
Microorganisms make an important contribution to the degradation of contaminants in bioremediation as well as in phytoremediation. An accurate estimation of microbial concentrations in the soil would be valuable in predicting contaminant dissipation during various bioremediation processes. A simple modeling approach to quantify the microbial biomass in the rhizosphere was developed in this study. Experiments were conducted using field column lysimeters planted with Eastern gamagrass. The microbial biomass concentrations from the rhizosphere soil, bulk soil, and unplanted soil were monitored for six months using an incubation–fumigation method. The proposed model was applied to the field microbial biomass data and good correlation between simulated and experimental data was achieved. The results indicate that plants increase microbial concentrations in the soil by providing root exudates as growth substrates for microorganisms. Since plant roots are initially small and do not produce large quantities of exudates when first seeded, the addition of exogenous substrates may be needed to increase initial microbial concentrations at the start of phytoremediation projects.  相似文献   
82.
This study investigated geochemical characteristics of the acid mine drainage (AMD) discharged from the abandoned mine adits in the vicinity of the Dogye coal mine in Korea. Acid mine drainage discharged from Jeoncha pit adit of the Dogye coal mine, which is the main source of the AMD in the study area, had a pH value of 3.0 and concentrations of 2148mg SO4 2– L–1, 229mg Fe L–1, 71mg A1 L–1 and 11mg Mn L–1. The reduction of some metal concentrations downstream from the discharge point could be explained on the basis of dilution and precipitation. The order of removal of metal ions downstream from the discharge point was Fe>A1, Cu>Zn, Mn. Acidity could be used as a good determining factor offering comprehensive and quantitative values for the polluting extent of acid mine drainage. The acidities existing in all acidic water samples in the Gunahan district originated primarily from mineral acidity, especially in the upper Nahan Creek from dissolved Fe and Al and in the middle and down Nahan Creek from dissolved Al. From the application of the WATEQ4F program, it was determined that predominant species of dissolved Fe in all water samples was Fe2+, and those of dissolved Al were AlSO4 + and Al3+ except for IW2 sample which was associated with white precipitates. The species of dissolved Al in IW2 sample include also AlOH2+ and Al(OH)2 +. The saturation indices of goethite and haematite were positive in the water samples associated with ochrous precipitates (usually called Yellow Boy), therefore these solids might be precipitated. For the IW2 sample, the saturation indices of amorphous Al(OH)3 and gibbsite were positive, so theoretically these solids might also be precipitated. By XRD analysis, it was found that goethite occurs in ochrous precipitates, and gibbsite in white precipitates.  相似文献   
83.
84.
Solar photocatalytic decolorization of methylene blue in water   总被引:8,自引:0,他引:8  
Kuo WS  Ho PH 《Chemosphere》2001,45(1):77-83
In this study, a photocatalytic decolorization system equipped with immobilized TiO2 and illuminated by solar light was used to remove the color of wastewater. To examine the decoloring efficiency of this system, photocatalytic decolorization of an organic dye such as methylene blue was studied as an example. The effects of light source, pH, as well as the initial concentration of dye were also investigated. It was observed that the solution of methylene blue could be almost completely decolorized by the solar light/TiO2 film process while there was about 50% color remaining with solar irradiation only. In addition, it was found that the decoloring efficiency of solution was higher with solar light irradiation than with artificial UV light irradiation, even though the artificial UV light source supplied higher UV intensity at 254 nm. The color removal rate of methylene blue with solar light irradiation was almost twice that of artificial UV light irradiation. This phenomena was mainly attributed to that some visible light range of solar light was useful for exciting the methylene blue molecules adsorbed on TiO2 film, leading to a photosensitization process undergoing and decoloring efficiency promoted. This solar-assisted photocatalytic device showed potential application for decoloring organic dyes in wastewater.  相似文献   
85.
The goal of the proposed project was to develop an anaerobic fermentation process that converts negative-value organic wastes into hydrogen-rich gas in a continuous-flow reactor under different operating conditions, such as hydraulic retention time (HRT), heat treatment, pH, and substrates. A series of batch tests were also conducted in parallel to the continuous study to evaluate the hydrogen conversion efficiency of two different organic substrates, namely sucrose and starch. A heat shock (at 90 degrees C for 15 minutes) was applied to the sludge in an external heating chamber known as a sludge activation chamber, as a method to impose a selection pressure to eliminate non-spore-forming, hydrogen-consuming bacteria and to activate spore germination. The experimental results showed that the heat activation of biomass enhanced hydrogen production by selecting for hydrogen-producing, spore-forming bacteria. The batch feeding at a shorter HRT of 20 hours (or higher organic loading rate) favored hydrogen production, whereas, at a longer HRT of 30 hours, methane was detected in the gas phase. The major organic acids of hydrogen fermentation were acetate, butyrate, and propionate. Up to 23.1% of influent chemical oxygen demand was consumed in biomass synthesis. Batch tests showed that the hydrogen-production potential of starch was lower than sucrose, and better conversion efficiency from starch was obtained at a lower pH of 4.5. However, addition of sucrose to starch improved the overall hydrogen-production potential and hydrogen-production rate. This study showed that sustainable biohydrogen production from carbohydrate-rich substrates is possible through heat activation of settled sludge.  相似文献   
86.
Solids retention time (SRT), biological scum trapping and recycle, and the dynamic equilibrium between Nocardioform populations in the foam and the mixed liquor are the controlling factors in activated sludge foaming events caused by Nocardioform bacteria. For the operating modes described in this paper, a cured mixed liquor foaming condition (filament counts of approximately 10(5) intersections/g volatile suspended solids) was only achieved when SRT control, selective wasting, and polymer addition were in effect. Solids retention time control, with the SRT remaining below 1.5 days, and selective wasting will cure a severely foaming mixed liquor, but effects will only be observed after 3 or 4 months after implementation. The combined wastage of Nocardioform bacteria from selective wasting and SRT control can ensure long-term foam control to the operation of a pure-oxygen activated sludge system with foam-trapping features. An SRT of 0.3 days will result in the complete washout of Nocardioform bacteria from the activated sludge system, which can then operate at an SRT of 3 days free of Nocardioform. Polymer addition to mixed liquor is only effective for foam control when a large portion of the system biomass exists as a heavy layer of foam above the mixed liquor.  相似文献   
87.
Specimens of medaka (Oryzias latipes) were observed continuously through an automatic image recognition system before and after treatments of an anti-cholinesterase insecticide, diazinon (0.1 mg/l), for 4 days in semi-natural conditions (2 days before treatment and 2 days after treatment). The "smooth" pattern was typically shown as a normal movement behavior, while the "shaking" pattern was frequently observed after treatments of diazinon. These smooth and shaking patterns were selected for training with an artificial neural network. Parameters characterizing the movement tracks, such as speed, degree of backward movements, stop duration, turning rate, meander, and maximum distance movements in the y-axis of 1-min duration, were given as input (six nodes) to a multi-layer perceptron with the back propagation algorithm. Binary information for the smooth and shaking patterns was separately given as the matching output (one node), while eight nodes were assigned to a single hidden layer. As new input data were given to the trained network, it was possible to recognize the smooth and shaking patterns of the new input data. Average recognition rates of the smooth pattern decreased significantly while those for the shaking pattern increased to a higher degree after treatments of diazinon. The trained network was able to reveal the difference in the shaking pattern in different light phases before treatments of diazinon. This study demonstrated that artificial neural networks could be useful for detecting the presence of toxic chemicals in the environment by serving as in-situ behavioral monitoring tools.  相似文献   
88.
The characteristics of ammonia removal by two types of biofilter (a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow) were investigated. A mixture of organic materials such as compost, bark, and peat was used as the biofilter media based on the small-scale column test for media selection. Complete removal capacity, defined as the maximum inlet load of ammonia that was completely removed, was obtained. The modified biofilter showed complete removal up to 1.0 g N/kg dry material/day. However, the removal capacity of the standard biofilter started to deviate from complete removal around 0.4 g N/kg dry material/day, indicating that the modified biofilter system has higher removal efficiency than the standard upflow one. In kinetic analysis of the biological removal of ammonia in each biofilter system, the maximum removal rate, Vm, was 0.93 g N/kg dry material/day and the saturation constant, Ks, was 32.55 ppm in the standard biofilter. On the other hand, the values of Vm and Ks were 1.66 g N/kg dry material/day and 74.25 ppm, respectively, in the modified biofilter system.  相似文献   
89.
Decolorizing of lignin wastewater using the photochemical UV/TiO2 process   总被引:1,自引:0,他引:1  
Chang CN  Ma YS  Fang GC  Chao AC  Tsai MC  Sung HF 《Chemosphere》2004,56(10):1011-1017
Studies on applying the photochemical UV/TiO2 oxidation process to treat the lignin-containing wastewater for dissolved organic carbon (DOC), color and reducing A254 (the absorption at the wavelength of 254 nm) have been carried out. The data obtained in this study demonstrate that the UV/TiO2 process is effective in oxidizing the lignin thus reducing the color and DOC of the wastewater treated. The combined UV/TiO2 treatment can achieve better removal of DOC and color than the UV treatment alone. Color removal, based on American Dye Manufacture Index (ADMI) measurement, is greater than 99% if the pH is maintained at 3.0 with the addition of 1 g l(-1) TiO2. When 10 g l(-1) TiO2 is applied, the oxidation reduction potential (ORP) value is reached to result in an 88% removal of both DOC and color. A model was developed based on the variation of ORP during the photochemical reaction to simulate the decoloring process. The proposed model can be used to predict the color removal efficiency of the UV/TiO2 process.  相似文献   
90.
Ammonia inhibition on thermophilic anaerobic digestion   总被引:13,自引:0,他引:13  
Sung S  Liu T 《Chemosphere》2003,53(1):43-52
This study evaluated both chronic and acute toxicity of ammonia in thermophilic anaerobic digestion of synthetic wastewater over a range of acclimation concentrations. The inhibition effects of ammonia, in terms of total ammonia nitrogen (TAN), under various pH values and acclimation conditions on thermophilic aceticlastic methanogens were investigated. Completely mixed thermophilic anaerobic reactors operated at a chemical oxygen demand (COD) loading rate of 4 g/lday and a solid retention time (SRT) of 7 days were subjected to TAN concentrations of 0.40, 1.20, 3.05, 4.92, and 5.77 g/l. The reactor operations presented a case of chronic inhibition and it was observed that TAN concentrations of 4.92 and 5.77 g/l caused a drop in methane production by as much as 39% and 64%, respectively with respect to control. Batch anaerobic toxicity assays (ATA) were also performed to evaluate the acute toxicity effects of TAN and pH on methanogenesis at thermophilic condition. Modeling based on the results of ATA indicated that aceticlastic methanogens acclimated to high concentrations of TAN were less sensitive to increase in TAN and could tolerate wider pH ranges. TAN concentration causing 100% inhibition occurred in the range of 8-13 g/l, depending on acclimation condition and system pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号